
UNIT- 2
 LOOP CONTROL STRUCTURE

Loops

The versatility of the computer lies in its ability to perform a set of instructions
repeatedly. This involves repeating some portion of the program either a specified
number of times or until a particular condition is being satisfied. This repetitive
operation is done through a loop control instruction.

There are three methods by way of which we can repeat a part of a program.
They are:

(a) Using a for statement
(b) Using a while statement
(c) Using a do-while statement

The while Loop

A while loop in C programming repeatedly executes a target statement as long as a
given condition is true.

Syntax:

The syntax of a while loop in C programming language is

 while(condition)
 {
 statements;
 }

Here, statement(s) may be a single statement or a block of statements. The condition may be any
expression, and true is any nonzero value. The loop iterates while the condition is true.

When the condition becomes false, the program control passes to the line immediately following
the loop.

Flow Diagram:

Here, the key point to note is that a while loop might not execute at all. When the condition
is tested and the result is false, the loop body will be skipped and the first statement after the
while loop will be executed.

Example:

#include <stdio.h>

int main ()
{
 int a = 10;
 while(a < 20)
{
 printf("value of a: %d\n", a);
 a++;
 }
 return 0;
}

When the above code is compiled and executed, it produces the following result – ouput:

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

The for loop

A for loop is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times.

Syntax

The syntax of a for loop in C programming language is −

 for (initialize ; condition; increment)
 {
 statements;
 }

Flow Diagram

 Initialize - Setting a loop counter to an initial value.
 Condition - Testing the loop counter to determine whether its value has

reached the number of repetitions desired.
 Increment - Increasing the value of loop counter each time the program

segment within the loop has been executed.
 The condition is now evaluated again. If it is true, the loop executes and the process repeats

itself (body of loop, then increment step, and then again condition). After the condition
becomes false, the 'for' loop terminates.

increment operator: a=a+1; is same as (a++;)

Example

#include <stdio.h>
 int main ()
{
 int a;
 for(a = 10; a < 20; a ++)
{
 printf("value of a: %d\n", a);
 }
 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12

START

test False

True

STOP

increment

body of loop

initialise

value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

Nesting of Loops

The way if statements can be nested, similarly whiles and fors can also be nested.

Syntax: for loop
 for (initialize ; condition; increment)
 {
 for (initialize ; condition; increment)
 {
 statement(s);
 }
 }
Syntax: while loop

 while(condition)
 {
 while(condition)
 {
 statement(s);
 }
 }

The Odd Loop(do while):

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop
in C programming checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except the fact that it is guaranteed to execute at least
one time.

Syntax:

The syntax of a do...while loop in C programming language is −

 do
 {
 statements;
 } while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in
the loop executes once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the
loop executes again. This process repeats until the given condition becomes false.

Flow Diagram

xample

#include <stdio.h>

int main () {

 int a = 10;

 do {
 printf("value of a: %d\n", a);
 a = a + 1;
 }while(a < 20);

 return 0;
}

When the above code is compiled and executed, it produces the following result −

value of a: 10
value of a: 11
value of a: 12
value of a: 13
value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

The break Statement
We often come across situations where we want to jump out of a loop instantly, without
waiting to get back to the conditional test. The keyword break allows us to do this. When
break is encountered inside any loop, control automatically passes to the first statement
after the loop. A break is usually associated with an if

Syntax

jump-statement:
 break ;

Within nested statements, the break statement terminates only the do, for, switch,
or while statement that immediately encloses it.

Ex:
main()
{

int i = 1 , j = 1 ;

while (i++ <= 100)
{

while (j++ <= 200)
{

if (j == 150)
break ;
else
printf(“%d %d /n”, i,j);

}
 }
 }

In this program when j equals 150, break takes the control outside the inner
while only, since it is placed inside the inner while.

The continue Statement

In some programming situations we want to take the control to the
beginning of the loop, bypassing the statements inside the loop, which have
not yet been executed. The keyword continue allows us to do this. When
continue is encountered inside any loop, control automatically passes to the
beginning of the loop.

main()
{

int i, j ;

for (i = 1 ; i <= 2 ; i++)
{

for (j = 1 ; j <= 2 ; j++)
{

if (i == j)
continue ;

printf ("\n%d %d\n", i, j) ;
}

}
}

The output of the above program would be...

1 2
2 1

The do-while Loop

The do-while loop looks like this:

do
{

this ;
and this ;
 and this ;
 and this ;

} while (this condition is true) ;

There is a minor difference between the working of while and do- while loops. This difference is
the place where the condition is tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while tests the condition after having
executed the statements within the loop.

The Case Control Structure Decisions Using switch

The control statement that allows us to make a decision from the number of
choices is called a switch, or more correctly a switch- case-default, since these three
keywords go together to make up the control statement. They most often appear as
follows: syntax:

switch (integer expression)
{

case constant 1 :
do this ;
case constant 2 :
 do this ;
case constant 3 :
 do this ;
default :

do this ;
}

The integer expression following the keyword switch is any C expression that will yield an

integer value. It could be an integer constant like 1, 2 or 3, or an expression that evaluates to an
integer. The keyword case is followed by an integer or a character constant. Each constant in each
case must be different from all the others. The “do this” lines in the above form of switch
represent any valid C statement.
Ex:

main()
{

int i = 2 ;

switch (i)
{

case 1 :
printf ("I am in case 1 \n") ;

case 2 :
printf ("I am in case 2 \n") ;

 case 3 :
printf ("I am in case 3 \n") ;

 default :
printf ("I am in default \n") ;

}
}

The output of this program would be:

I am in case 2

Flow chart:

switch Versus if-else Ladder

There are some things that you simply cannot do with a switch. These
are:

(a) A float expression cannot be tested using a switch
(b) Cases can never have variable expressions (for example it is wrong to

say case a +3 :)
(c) Multiple cases cannot use same expressions. Thus the following switch

is illegal:

switch (a)
{
case 3 :
...
case 1 + 2 :
...
}

START

case 1

No

case 2

No

Yes

Yes

case 3

No

case 4

No

Yes

Yes

STOP
switch (choice)
{

case 1 :
statement 1 ;
break ;

case 2 :
statement 2 ;
break ;

case 3 :
statement 3 ;
break ;

case 4 :
statement 4 ;

}

statement 4

statement 3

statement 2

statement 1

If on the other hand the conditions in the if-else were simple and less in
number then if-else would work out faster than the lookup mechanism of a
switch.
Hence a switch with two cases would work slower than an equivalent if-
else.
Thus, you as a programmer should take a decision which of the two should
be used when.

The goto Keyword:
The goto statement is a jump statement which is sometimes also referred to as

unconditional jump statement.
The goto statement can be used to jump from anywhere to anywhere within a

function.

	Syntax:
	Flow Diagram:
	Example:
	Syntax
	Flow Diagram
	Example
	Syntax: (1)
	Flow Diagram (1)
	Syntax (1)

